

Journal of Organometallic Chemistry 493 (1995) 223-227

Synthese und Kristallstruktur des ersten dimeren Silaamidids *

Ina Hemme, Martina Schäfer, Regine Herbst-Irmer, Uwe Klingebiel *

Institut für Anorganische Chemie der Universität Göttingen, Tammannstr. 4, D-37077 Göttingen, Deutschland

Eingegangen den 26. September 1994; in revidierter Form den 28. Oktober 1994

Abstract

Bis(tert-butyldimethylsilylamino)-fluorophenylsilane (1) is prepared by the reaction of lithiated silylamine with trifluorophenylsilane. 1 reacts with tert-butyllithium in the molar ratio 1:2 to give a dilithium derivative, PhSiF(NLiR)₂. LiF-elimination in the presence of THF leads to the formation of a silaamidide, which is isolated as a four-membered cyclosilazane anion, (PhSi-NR)₂Li(NR)^{\odot}₂, and Li(THF)^{\oplus}₄ cation (2). The endocyclic Si-N bonds are much longer (171.0-176.7 pm) than the exocyclic ones (165.0 pm, 165.6 pm). The (Si-N)₂ ring is not planar, and the sum of angles at the nitrogen atoms differ from 360° (N(1) Σ = 356.4° and N(2) Σ = 352.4°).

Zusammenfassung

Bis(tert-butyldimethylsilylamino)-fluorophenylsilane (1) entsteht in der Reaktion des lithiierten Silylamins mit Trifluorphenylsilan. 1 reagiert mit tert-Butyllithium im molaren Verhältnis 1:2 zum Dilithiumderivat, PhSiF(NLiR)₂. LiF-Abspaltung führt in Gegenwart von THF zur Bildung eines Silaamidids, das als viergliedriges Cyclosilazan-Anion, (PhSi-NR)₂Li(NR)^{\odot}₂, und Li(THF)^{\oplus}-Kation (2) isoliert wird. Die endocyclischen Si-N-Abstände sind mit 171.0 bis 176.7 pm bedeutend länger als die exocyclischen Si-N-Bindungen (165.0 pm, 165.6 pm). Der Si-N-Vierring ist nicht planar, und die Winkelsumme an den Stickstoffatomen weicht von 360° ab (N(1) Σ = 356.4° und N(2) Σ = 352.4°).

Keywords: Silicon; Silaamidide; Dimerization; Crystal structure

1. Einleitung

Die Pionierarbeit bei der Verwendung der Silylamid-Gruppen in der Haupt- und Nebengruppen-Chemie leistete Wannagat [1,2]. Kristallstrukturuntersuchungen von Amidverbindungen zeigen die Metallionen oft in ungewöhnlicher Koordination [3–8]. Die räumliche Anordnung der Li-Atome in Silylamiden umfaßt die breite Palette von Ring-, Würfel-, Prismen-, Käfig- und Leitergeometrien. Die Triebkraft bei der Ausbildung dieser Strukturen wird im wesentlichen durch die kontinuierliche Assoziation der Li-N-Einheiten bestimmt. Die fortlaufende Oligomerisation der Lithiumamide wird durch voluminöse Substituenten und die Verwendung von Donorsolventien beeinflußt und gebremst. Durch Koordination an das Li[⊕]-Kation sättigen Donorsolventien dieses elektronisch ab und erniedrigen somit seine Lewis-saure Wirkung.

Lithiierte Silylamine zeigen häufig ausgeprägte kovalente Merkmale. Sie können destilliert oder in unpolaren Solventien gelöst und umkristallisiert werden [7]. Populationsanalysen und MO-Kalkulationen sprechen der Li-N-Bindung jedoch einen hohen ionischen Charakter zu und erklären die kovalenten Eigenschaften mit der peripheren Abschirmung der polaren Li-N-Einheit durch voluminöse Liganden. Daher werden neutrale Organolithium-Verbindungen auch als "Supramoleküle" oder "ionische Moleküle" bezeichnet [5].

In der Reaktion von Bis(amino)silanen mit *n*-BuLi im molaren Verhältnis 1:2 konnten bisher folgende Verbindungstypen nachgewiesen werden:

^{*} Herrn Prof. Dr. Klaus Rühlmann zum 65. Geburtstag am 08. November 1994 gewidmet.

^{*} Corresponding author.

(a) Durch Kontaktionen verbundene, dimere Dilithium-Verbindungen $((R-NLi)_2-SiR'_2)_2$ [5,7,9,10].

(b) Silaamidide mit dreifach koordiniertem Silicium R'Şi(NR)₂Li [11].

(c) Lithiumsilyldiamide, die als cyclisches R'_2 Si- $(NR)_2$ Li^{\oplus}-Anion und Li([12]-Krone (4))^{\oplus}-Kation charakterisiert wurden [12,13].

Wir berichten hier über Isolierung und Charakterisierung des ersten Lithium-[cyclodisilazan] diamidlithium-tetrahydrofuranats.

2. Ergebnisse und Diskussion

Ausgehend von $Me_3CMe_2SiNH_2$, *n*-BuLi und PhSiF₃ isolierten wir das Bis(amino)silan 1 (Gl. 1).

$$2 Me_{3}C - Si - NH_{2} \xrightarrow{+2 LiCMe_{3}}_{+ PhSiF_{3}}$$

$$Me_{3}CMe_{2}Si - NH_{2} \xrightarrow{-2 BuH}_{-2 LiF}$$

$$Me_{3}CMe_{2}Si + N - Si - N \xrightarrow{H}_{H} SiMe_{2}CMe_{3}$$

$$H \xrightarrow{H}_{H} N \xrightarrow{H}_{H} H$$

$$(1)$$

1 wird mit LiCMe₃ in *n*-Hexan dilithiiert. Es entsteht ein farbloser Feststoff, der durch Zugabe von THF in der Siedehitze gelöst wird. Hierbei wird LiF-Bildung

Abb. 1. Kristallstruktur des anionischen Teils von 2.

Tabelle 1

Ausgewahlte Bin	dungslangen [j	omj und -winkel [°] fi	ur 1
Si(1)-N(3)	165.0(4)	Si(1)-N(2)	174.9(4)
Si(1)-N(1)	176.7(3)	N(1)-Si(4)	171.0(3)
N(1)-Si(2)	176.3(3)	Si(2)-N(4)	165.6(3)
Si(2)-N(2)	176.5(3)	N(2)-Si(6)	171.3(3)
N(3)-Si(3)	166.1(4)	N(3)-Li(1)	202.1(10)
N(4)-Si(5)	166.7(3)	N(4) - Li(1)	200.6(10)
N(3)-Si(1)-N(2)	113.5(2)	N(3)-Si(1)-N(1)	110.9(2)
N(2)-Si(1)-N(1)	88.1(2)	Si(4) - N(1) - Si(2)	140.2(2)
Si(4) - N(1) - Si(1)	126.1(2)	Si(2) - N(1) - Si(1)	90.1(2)
N(4)-Si(2)-N(1)	110.7(2)	N(4)-Si(2)-N(2)	114.1(2)
N(1)-Si(2)-N(2)	87.7(2)	Si(1) - N(3) - Si(3)	146.9(2)
Si(2)-N(4)-Si(5)	145.4(2)	N(4)-Li(1)-N(3)	135.3(5)

beobachtet. Durch langsames Abkühlen werden farblose Kristalle von 2 isoliert (Gl. 2).

Aufgrund der Synthese monomerer Silaamidide [11] aus dilithiierten Bis(amino)chlorsilanen kann für die Bildung von 2 folgender Reaktionsmechanismus diskutiert werden:

Aus dem dilithiierten Bis(silylamino)fluorphenylsilan wird nach Zugabe von THF in der Wärme intramolekular LiF abgespalten. Das entstehende Silaamidid [11] ist kinetisch nicht ausreichend stabilisiert und dimerisiert in einer (2 + 2)-Cycloaddition.

Nach den Ergebnissen der Einkristall-Röntgenstrukturanalyse von 2 komplexiert das Donorsolvens THF ein Li^{\oplus} -Kation zum $[Li(THF)_4]^{\oplus}$, so daß als Gegenion ein Lithium(cyclodisilazan)diamid-Anion entsteht. In diesem Anion besteht die Koordinationssphäre des Lithiums aus den beiden Stickstoffatomen der Amideinheiten. Lithium ist zweifach koordiniert und verklammert somit das $(SiN)_2N_2$ -Gerüst zu sechsgliedrigen Ringsystemen. Die Amidgruppen sättigen das Lithium-Kation elektronisch ausreichend ab, eine weitere THF-Koordination, wie sie z.B. im $(SiN_2Li)^{\oplus}$ - Tabelle 2

Atomkoordinaten ($\times 10^4$) und äguivalente isotrope Auslenkungsparameter (pm² × 10⁻¹) für 1. U_{eq} wird berechnet als ein Drittel der Spur des orthogonalen U_i-Tensors

Atom	x	у	Z	U _{eq}
Si(1)	7770(1)	2753(1)	253(1)	26(1)
N(1)	8154(2)	3182(2)	1047(2)	28(1)
Si(2)	7464(1)	3885(1)	903(1)	26(1)
N(2)	7261(2)	3580(2)	38(2)	27(1)
N(3)	7258(2)	2019(2)	374(2)	32(1)
Si(3)	7048(1)	1121(1)	189(1)	36(1)
C(1)	7854(3)	453(3)	436(3)	51(1)
C(2)	6687(3)	032(3)	-753(2)	58(2)
C(2)	6207(3)	702(3)	- 755(2)	JO(2) 45(1)
C(3)	(155(4))	793(3) 54(2)	575(2)	45(1)
C(4)	6155(4)	-34(3)	5/5(3)	50(2)
	6532(3)	935(3)	1448(2)	54(1)
(6)	5580(3)	1217(3)	406(3)	64(2)
C(7)	8510(2)	2616(3)	- 280(2)	32(1)
C(8)	8580(2)	1973(3)	- 665(2)	37(1)
C(9)	9142(3)	1899(3)	- 1040(2)	47(1)
C(10)	9648(3)	2467(3)	- 1036(3)	54(1)
C(11)	9593(3)	3116(3)	- 666(3)	52(1)
C(12)	9035(2)	3180(3)	- 288(2)	43(1)
Si(4)	8749(1)	2766(1)	1708(1)	36(1)
C(13)	9302(3)	2027(3)	1364(3)	55(1)
C(14)	8255(3)	2274(3)	2330(3)	50(1)
C(15)	9408(3)	3478(3)	2195(2)	45(1)
C(16)	10029(3)	3074(4)	2687(3)	65(2)
C(17)	9749(3)	3956(3)	1681(3)	60(2)
C(18)	9011(3)	4002(3)	2623(3)	56(1)
N(4)	6806(2)	3703(2)	1348(2)	31(1)
Si(5)	6101(1)	4062(1)	1666(1)	39(1)
C(19)	5187(3)	3611(3)	1247(3)	57(2)
C(20)	5952(3)	5106(3)	1582(3)	49(1)
C(20)	6100(3)	3841(3)	2621(3)	$\frac{47(1)}{47(1)}$
C(21)	6190(3)	2078(3)	2021(3)	47(1)
C(22)	6022(2)	2970(J) 4162(A)	2/21(3)	50(2)
C(23)	0932(3) 5551(2)	4102(4)	2995(3)	39(2) 72(2)
C(24)	5551(5)	4182(4)	2921(3)	7.3(2)
(25)	/865(2)	4863(2)	946(2)	30(1)
C(26)	/86/(2)	5348(3)	1499(2)	37(1)
C(27)	8200(3)	6049(3)	1532(3)	45(1)
C(28)	8538(3)	6289(3)	1004(3)	47(1)
C(29)	8543(3)	5824(3)	447(3)	45(1)
C(30)	8209(2)	5126(3)	417(2)	38(1)
Si(6)	6505(1)	3811(1)	- 570(1)	31(1)
C(31)	6190(3)	4774(3)	- 382(3)	56(2)
C(32)	5721(2)	3148(3)	- 575(2)	44(1)
C(33)	6735(3)	3816(3)	- 1468(2)	42(1)
C(34)	6078(3)	4150(4)	- 1983(3)	69(2)
C(35)	7425(3)	4295(3)	- 1475(3)	61(2)
C(36)	6882(3)	3017(3)	~ 1697(2)	50(1)
Li(1)	6875(7)	2607(5)	1113(6)	85(4)
Li(2)	12638(5)	2149(6)	1108(5)	64(3)
O(1S)	12463(2)	3007(2)	1622(2)	71(1)
C(1S)	11758(3)	3325(4)	1664(3)	77(2)
C(2S)	11884(3)	3912(4)	2217(3)	70(2)
C(3S)	12674(3)	3869(4)	2524(3)	73(2)
C(4S)	13011(4)	3560(5)	1954(4)	68(2)
C(4S')	12981(10)	3196(16)	2232(13)	72(4)
O(2S)	12926(2)	2445(2)	273(2)	66(1)
C(5S)	13025(6)	1951(5)	- 296(6)	85(3)
C(6S)	13660(6)	2276(5)	- 560(5)	81(2)
C(7S)	13586(4)	3077(4)	- 460(3)	81(2)
C(8S)	13271(3)	3149(3)	172(3)	67(2)
C(55')	12724(13)	2079(12)	-374(10)	76(4)
,	12727(13)	20, /(12)	577(10)	10(1)

Tabelle 2	(Fortsetzung)	
-----------	---------------	--

Atom	z	у	z	U _{eq}
C(6S')	13259(13)	2340(11)	- 781(9)	79(3)
O(3S)	13438(2)	1607(3)	1674(2)	82(1)
C(9S)	13384(10)	1040(14)	2162(13)	81(3)
C(10S)	14123(13)	782(17)	2441(15)	82(3)
C(11S)	14641(9)	1287(17)	2149(13)	79(3)
C(12S)	14173(10)	1547(17)	1486(11)	77(3)
C(9S')	13502(14)	801(11)	1566(12)	83(3)
C(10')	14206(14)	578(13)	2012(15)	81(3)
C(11')	14120(18)	1018(17)	2655(11)	81(3)
C(12′)	13901(17)	1777(13)	2354(11)	82(3)
C(9\$")	13981(8)	1251(9)	1367(6)	78(3)
C(10")	14427(8)	777(9)	1923(7)	80(3)
C(11")	14320(9)	1095(10)	2568(7)	85(3)
C(12")	13729(8)	1688(9)	2416(6)	82(3)
O(4S)	11779(2)	1509(2)	856(2)	75(1)
C(13S)	11710(4)	749(4)	1112(4)	63(2)
C(14S)	10917(4)	557(4)	878(3)	83(2)
C(15S)	10693(4)	980(4)	227(4)	85(2)
C(16S)	11124(5)	1698(5)	363(5)	94(3)
C(13')	11425(16)	1094(17)	1302(8)	77(4)
C(16')	11331(15)	1450(19)	144(9)	83(4)

Anion [12,13] gefunden wird, erfolgt nicht. Die Si-N-Bindungslängen im Cyclodisilazan sind mit 174.9 pm und 176.7 pm gestreckt, während die Si-N-Abstände der Amid-Stickstoffatome mit Si(1)-N(3) = 165.0 pm und Si(2)-N(4) = 165.6 pm eine starke Bindungsverkürzung aufweisen. Dies deutet, zusammen mit den aufgeweiteten Winkeln Si(1)-N(3)-Si(3) = 146.9° und $Si(2)-N(4)-Si(5) = 145.4^{\circ}$, auf Doppelbindungsanteile hin [14]. Im Cyclodisilazan sind die "tetraedrischen" (N-Si-N)-Winkel mit $N(1)-Si(2)-N(2) = 87.7^{\circ}$ und $N(2)-Si(1)-N(1) = 88.1^{\circ}$ ungewöhnlich klein. Die Winkelsummen an den dreifach silvlsubstituierten Stickstoffatomen N(1) und N(2) betragen 356,4° und 352.4°. Während N(1) noch als relativ planar angesehen werden kann, ist die Geometrie des N(2)-Stickstoffs bereits trigonal pyramidal. Diese für eine (N-Si₃)-Einheit äußerst seltene Koordination [15,16] hat zur Folge, daß der viergliedrige (Si-N)-Ring, im Gegensatz zu anderen kristallstrukturanalytisch untersuchten Cyclodisilazanen, nicht planar ist.

Bindungslängen und -winkel sind in Tabelle 1 wiedergegeben, die Atomparameter in Tabelle 2.

In den ¹H- und ¹³C-NMR-Experimenten treten die SiMe₂CMe₃-Substituenten bei gleicher chemischer Verschiebung auf (¹H-NMR: $\delta = 0.07$ CH₃, 0.93 CMe₃; ¹³C-NMR: $\delta = 2.15$ CH₃, 20.38 CC₃, 28.30 CC₃). Im ⁷Li-NMR-Spektum unterscheidet sich das zweifach koordinierte, zum Anion gehörende Lithium stark vom THF-koordinierten Lithium (+1.68, -1.28 ppm). Die chemischen Verschiebungen der ²⁹Si-Kerne werden bei -40.45, -15.42 und -2.69 ppm beobachtet. Dies ist ein Bereich, in dem ²⁹Si-NMR-Resonanzen von Silylamiden gefunden werden. Die dem PhSi zuzuordnende Resonanz bei -40.45 ppm unterscheidet sich extrem von denen bekannter, viergliedriger (SiN)₂-Ringe, die gegenüber TMS meist bei tieferem Feld (1-10 ppm)gefunden werden. Die chemische Verschiebung von -40.45 ppm für die PhSiN₂-Einheit ist ähnlich der PhSiN₂-Einheit eines als monomer publizierten Silaamidids (-37.5 ppm) [11].

3. Experimenteller Teil

Die Versuche wurden unter Feuchtigkeitsausschluß durchgeführt, MS: CH–5-Spektrometer, Varian. NMR: Alle Messungen bei 25°C mit einem 250 MHz Spektrometer (außer ¹⁹F: 80 MHz-Gerät). Standard für ¹H-, ¹³C- und ²⁹Si-NMR: TMS int., für ¹⁹F-NMR: C₆F₆ ext., für ⁷Li-NMR: LiCL ext.

3.1. Bis[(tert-butyldimethylsilyl)amino]fluorphenylsilan (1)

0.14 mol (18.34 g) *t*-Butyldimethylsilylamin in 100 ml *n*-Hexan werden mit 0.14 mol *n*-BuLi (23%ig in *n*-Hexan) versetzt und 2 h zum Sieden erhitzt. Nach beendeter Butanabspaltung werden 0.07 mol (11.34 g) PhSiF₃ zugegeben und 3 h unter Rückfluß erhitzt. Das Produkt wird vom LiF abgetrennt und durch fraktionierte Destillation bei 0.01 mbar gereinigt. Ausbeute: 42%.

C₁₈H₃₇FN₂Si₃ (384.8): Sdp. 65°C/0.01 mbar. MS (70 eV: m/z (%) = 369 (5) [M-CH₃]⁺, 327 (100) [M-CMe₃]⁺. NMR (CDCl₃/TMS): ¹H-NMR: δ = 0.28 (d, ⁵*J*(H,F) = 1.4 Hz, 6H; CH₃), 0.29 (6H; CH₃), 0.80 (2H; NH), 1.12 (d, ⁶*J*(H,F) = 4.9 Hz, 18H; *t*-Bu), 7.50–7.58 (3H; Ph-H_{3,4,5}), 7.89–7.95 (2H; Ph-H_{2,6}); ¹³C-NMR: δ = -3.12 (d, ⁴*J*(C,F) = 0.9 Hz; CH₃), -2.96 (d, ⁴*J*(C,F) = 1.2 Hz; CH₃), 17.88 (d, ⁴*J*(C,F) = 0.3 Hz; CC₃), 26.13 (CC₃), 127.58 (Ph-C₄), 127.8 (d, ⁴*J*(C,F) = 0.6 Hz; Ph-C_{3,5}), 134.27 (d, ³*J*(C,F) = 1.5 Hz; Ph-C₂), 134.78 (d, ²*J*(C,F) = 19.0 Hz; Ph-C₁); ¹⁹F-NMR: δ = 32.02 (t, ³*J*(F,H) = 3.7 Hz); ²⁹Si-NMR: δ = -32.20 (d, ¹*J*(Si,F) = 257.7 Hz), 9.48 (d, ³*J*(Si,F) = 0.9 Hz).

3.2. Lithium[cyclodisilazan]diamid-tetrakis(tetrahydrofuran)lithium (2)

0.01 mol (9.66 g) 1 in 20 ml *n*-Hexan werden bei 0°C mit 0.02 mol LiCMe₃ (15% ig in *n*-Hexan) versetzt, 5 h bei dieser Temperatur gerührt und langsam auf Zimmertemperatur gebracht. Es wird in der Siedehitze so viel THF zugegeben, bis sich das gebildete Lithiumsalz löst. Innerhalb von 3 d kühlt man von der Siedehitze auf Zimmertemperatur ab, wobei farblose Kristalle entstehen. Ausbeute: 91%.

 $C_{52}H_{102}Li_2N_4Si_6$ (965.8): Schmp. 290°C (Zersetzung). NMR (C_6D_6/THF): ¹H-NMR: $\delta = 0.07$ (24H; CH₃), 0.93 (36H; ¹Bu), 7.19 (dd, ³J(H,H) = 7.3 Hz, ⁴J(H,H) = 1.5 Hz, 2H; Ph-H₄), 7.27 und 7.32 (dd (Pseudotriplett), ${}^{3}J(H,H) = {}^{3}J(H,H) = 7.4$ Hz, 4H; Ph-H₃ oder -H₅), 8.19 und 8.51 (dd, ${}^{3}J(H,H) = 7.9$ Hz, ${}^{4}J(H,H) = 1.3$ Hz, 4H; Ph-H₂ oder -H₆); 13 C-NMR: $\delta = 2.15$ (CH₃), 20.38 (CC₃), 28.30 (CC₃), 125.88 und 126.40 (Ph-C_{2,6}), 136.41 und 137.24 (Ph-C_{3,5}), 146.21 und 149.86 (Ph-C_{1,4}); ⁷Li-NMR: $\delta = -1,28, 1,68; {}^{29}$ Si-NMR: $\delta = -40,45, -15,42, -2,69.$

3.3. Kristalldaten und Angaben zur Einkristall-Röntgenstrukturanalyse [17]

Stoe-Siemens-AED-Vierkreisdiffraktomer, graphitmonochromatisierte Mo-K α -Strahlung ($\lambda = 71.073$ pm). Meßtemperatur: 153 K, schockgekühlter Kristall im Öltropfen [18], Meßbereich $2\Theta = 8-45^{\circ}$, Strukturlösung mit Direkten Methoden [19]. Verfeinerung nach F^2 [20], alle Nichtwasserstoffatome anisotrop, H-Atome an Kohlenstoff ideal positioniert und nach dem Reitermodell verfeinert. Alle THF-Moleküle sind fehlgeordnet und wurden mit Abstandrestraints sowie Restraints für die Auslenkungsparameter verfeinert. $wR2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w F_o^4]^{1/2}; R1 = \Sigma || F_o | - | F_c || / \Sigma || F_o ||.$

2: $C_{52}H_{102}Li_2N_4O_4Si_6$ (1029.80); Kristallgröße: 0.6 × 0.6 × 0.7 mm, monoklin, Raumgruppe $P2_1/n$, Gitterkonstanten: a = 1842.0(5) pm, b = 1770.7(5) pm, c = 1974.8(7) pm, $\beta = 100.57(3)^\circ$, V = 6.332(3) nm³, Z = 4, $\rho_{ber.} = 1.080$ Mg m⁻³, F(000) = 2256; 8853 gesammelte Reflexe, davon 8263 unabhängig, 8222 zur Verfeinerung von 750 Parametern mit Hilfe von 913 Restraints benutzt; wR2 (alle Daten) = 0.2295, R1 ($F > 4\sigma(F)$) = 0.0639; Restelektronendichte max. 940, min. -497 e nm⁻³.

Dank

Diese Arbeit wurde vom Fonds der Chemischen Industrie und der Deutschen Forschungsgemeinschaft unterstützt.

Literatur und Bemerkungen

- [1] U. Wannagat, Adv. Inorg. Radiochem., 6 (1964) 225-278.
- [2] U. Wannagat, Fortsch. Chem. Forsch., 9 (1967) 102-144.
- [3] U. Wannagat, Pure and Appl. Chem., 19 (1969) 329-342.
- [4] M.F. Lappert, P.P. Power, A.R. Sanger and R.C. Srivastava, *Metal and Metalloid Amides*, Ellis Horwood, Chichester, England, 1980.
- [5] K. Gregory, P. v. Ragué Schleyer and R. Snaith, Adv. Inorg. Chem., 37 (1991) 47-142.
- [6] M. Veith, Angew. Chem., 99 (1987) 1-14.
- [7] M. Veith, Chem. Rev., 90 (1990) 3-16.
- [8] M. Veith, F. Gofting and V. Huch, Chem. Ber., 121 (1988) 943-949.
- [9] D.J. Brauer, H. Bürger und G.R. Liewald, J. Organomet. Chem., 308 (1986) 119-130.

- [10] B. Tecklenburg, Dissertation, Universität Göttingen, 1991.
- [11] G.E. Underiner and R. West, Angew. Chem., 102 (1990) 579– 580; G.E. Underiner, R.P. Tan, D.R. Powell and R. West, J. Am. Chem. Soc., 113 (1991) 8437–8443.
- [12] B. Tecklenburg, U. Klingebiel and D. Schmidt-Bäse, J. Organomet. Chem., 426 (1992) 287-294.
- [13] I. Hemme, Dissertation, Universität Göttingen, 1994.
- [14] D. Stalke, U. Pieper, S. Vollbrecht and U. Klingebiel, Z. Naturforsch., 45b (1990) 1513-1516.
- [15] M. Veith, F. Gofting and V. Huch, Z. Naturforsch., 43b (1988) 846-856.
- [16] K. Dippel, U. Klingebiel, M. Noltemeyer, F. Pauer and G.M., Sheldrick, Angew. Chem., 100 (1988) 1093-1094.
- [17] Weitere Einzelheiten zur Kristallstrukturanalyse können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76334 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-401276, der Autoren und des Zeitschriftenzitats angefordert werden.
- [18] T. Kottke and D. Stalke, J. Appl. Crystallogr., 26 (1993) 615-619.
- [19] G.M. Sheldrick, Acta Crystallogr., A 46 (1990) 467-473.
- [20] G.M. Sheldrick, SHELXL-93, Programm zur Kristallstrukturverfeinerung, Göttingen, 1993.